20 research outputs found

    Adaptive Submodular Influence Maximization with Myopic Feedback

    Full text link
    This paper examines the problem of adaptive influence maximization in social networks. As adaptive decision making is a time-critical task, a realistic feedback model has been considered, called myopic. In this direction, we propose the myopic adaptive greedy policy that is guaranteed to provide a (1 - 1/e)-approximation of the optimal policy under a variant of the independent cascade diffusion model. This strategy maximizes an alternative utility function that has been proven to be adaptive monotone and adaptive submodular. The proposed utility function considers the cumulative number of active nodes through the time, instead of the total number of the active nodes at the end of the diffusion. Our empirical analysis on real-world social networks reveals the benefits of the proposed myopic strategy, validating our theoretical results.Comment: Accepted by IEEE/ACM International Conference Advances in Social Networks Analysis and Mining (ASONAM), 201

    A Degeneracy Framework for Scalable Graph Autoencoders

    Full text link
    In this paper, we present a general framework to scale graph autoencoders (AE) and graph variational autoencoders (VAE). This framework leverages graph degeneracy concepts to train models only from a dense subset of nodes instead of using the entire graph. Together with a simple yet effective propagation mechanism, our approach significantly improves scalability and training speed while preserving performance. We evaluate and discuss our method on several variants of existing graph AE and VAE, providing the first application of these models to large graphs with up to millions of nodes and edges. We achieve empirically competitive results w.r.t. several popular scalable node embedding methods, which emphasizes the relevance of pursuing further research towards more scalable graph AE and VAE.Comment: International Joint Conference on Artificial Intelligence (IJCAI 2019

    Gravity-Inspired Graph Autoencoders for Directed Link Prediction

    Full text link
    Graph autoencoders (AE) and variational autoencoders (VAE) recently emerged as powerful node embedding methods. In particular, graph AE and VAE were successfully leveraged to tackle the challenging link prediction problem, aiming at figuring out whether some pairs of nodes from a graph are connected by unobserved edges. However, these models focus on undirected graphs and therefore ignore the potential direction of the link, which is limiting for numerous real-life applications. In this paper, we extend the graph AE and VAE frameworks to address link prediction in directed graphs. We present a new gravity-inspired decoder scheme that can effectively reconstruct directed graphs from a node embedding. We empirically evaluate our method on three different directed link prediction tasks, for which standard graph AE and VAE perform poorly. We achieve competitive results on three real-world graphs, outperforming several popular baselines.Comment: ACM International Conference on Information and Knowledge Management (CIKM 2019

    A Scalable Framework for Automatic Playlist Continuation on Music Streaming Services

    Full text link
    Music streaming services often aim to recommend songs for users to extend the playlists they have created on these services. However, extending playlists while preserving their musical characteristics and matching user preferences remains a challenging task, commonly referred to as Automatic Playlist Continuation (APC). Besides, while these services often need to select the best songs to recommend in real-time and among large catalogs with millions of candidates, recent research on APC mainly focused on models with few scalability guarantees and evaluated on relatively small datasets. In this paper, we introduce a general framework to build scalable yet effective APC models for large-scale applications. Based on a represent-then-aggregate strategy, it ensures scalability by design while remaining flexible enough to incorporate a wide range of representation learning and sequence modeling techniques, e.g., based on Transformers. We demonstrate the relevance of this framework through in-depth experimental validation on Spotify's Million Playlist Dataset (MPD), the largest public dataset for APC. We also describe how, in 2022, we successfully leveraged this framework to improve APC in production on Deezer. We report results from a large-scale online A/B test on this service, emphasizing the practical impact of our approach in such a real-world application.Comment: Accepted as a Full Paper at the SIGIR 2023 conferenc

    On the Consistency of Average Embeddings for Item Recommendation

    Full text link
    A prevalent practice in recommender systems consists in averaging item embeddings to represent users or higher-level concepts in the same embedding space. This paper investigates the relevance of such a practice. For this purpose, we propose an expected precision score, designed to measure the consistency of an average embedding relative to the items used for its construction. We subsequently analyze the mathematical expression of this score in a theoretical setting with specific assumptions, as well as its empirical behavior on real-world data from music streaming services. Our results emphasize that real-world averages are less consistent for recommendation, which paves the way for future research to better align real-world embeddings with assumptions from our theoretical setting.Comment: 17th ACM Conference on Recommender Systems (RecSys 2023

    Flow Moods: Recommending Music by Moods on Deezer

    Full text link
    The music streaming service Deezer extensively relies on its Flow algorithm, which generates personalized radio-style playlists of songs, to help users discover musical content. Nonetheless, despite promising results over the past years, Flow used to ignore the moods of users when providing recommendations. In this paper, we present Flow Moods, an improved version of Flow that addresses this limitation. Flow Moods leverages collaborative filtering, audio content analysis, and mood annotations from professional music curators to generate personalized mood-specific playlists at scale. We detail the motivations, the development, and the deployment of this system on Deezer. Since its release in 2021, Flow Moods has been recommending music by moods to millions of users every day.Comment: 16th ACM Conference on Recommender Systems (RecSys 2022) - Industry pape

    Track Mix Generation on Music Streaming Services using Transformers

    Full text link
    This paper introduces Track Mix, a personalized playlist generation system released in 2022 on the music streaming service Deezer. Track Mix automatically generates "mix" playlists inspired by initial music tracks, allowing users to discover music similar to their favorite content. To generate these mixes, we consider a Transformer model trained on millions of track sequences from user playlists. In light of the growing popularity of Transformers in recent years, we analyze the advantages, drawbacks, and technical challenges of using such a model for mix generation on the service, compared to a more traditional collaborative filtering approach. Since its release, Track Mix has been generating playlists for millions of users daily, enhancing their music discovery experience on Deezer.Comment: RecSys 2023 - Industry track with oral presentatio
    corecore